ILCOR, 2015 and the countdown to new guidelines

8704-000_i-gel_resus_mainAs 2014 draws to a close, it seems a good opportunity to look forward to 2015 and consider what the new year may bring. It does look set to be an interesting year. The inaugural European Games will be held in Baku in June, the 7th Rugby World Cup will take place in England in September and Resuscitation 2015 – The Guidelines Congress, will be held in Prague in October!

Sport can be unpredictable, but the winners of the 2015 Rugby World Cup will almost certainly come from one of just five or six nations. I doubt the new 2015 ERC Resuscitation guidelines will provide us with too many surprises either, and neither should they. The ILCOR Scientific Evidence Evaluation and Review System (SEERS) and Consensus on Resuscitation Science and Treatment Recommendations (CoSTR), from which new guidelines are eventually developed, is a process that should ensure the right questions are asked, the relevant evidence is gathered and reviewed and a consensus on the science is obtained before any treatment recommendations are made. New guidelines then follow.

The ILCOR web-site provides the opportunity to review the current status of the PICO questions. In the Advanced Life Support (ALS) section, two questions in particular caught my attention:

Advanced airway placement (ETT v SGA)

Among adults who are in cardiac arrest in any setting  (P), does tracheal tube insertion as first advanced airway  (I), compared with insertion of a supraglottic airway as first advanced airway  (C), change ROSC, CPR parameters, development of aspiration pneumonia, Survival with Favourable neurological/functional outcome at discharge, 30 days, 60 days, 180 days AND/OR 1 year, Survival only at discharge, 30 days, 60 days, 180 days AND/OR 1 year (O)?

Airway placement (Basic vs Advanced)

Among adults who are in cardiac arrest in any setting (P), does insertion of an advanced airway (ETT or supraglottic airway) (I), compared with basic airway (bag mask +/- oropharyngeal airway) (C), change Survival with Favourable neurological/functional outcome at discharge, 30 days, 60 days, 180 days AND/OR 1 year, Survival only at discharge, 30 days, 60 days, 180 days AND/OR 1 year, ROSC, CPR parameters, development of aspiration pneumonia (O)?

Both of the above subjects have been discussed in previous blog posts. The subject of ETT v SGA was covered in a post from October 2012 entitled, ‘Supraglottic airways versus tracheal intubation for OHCA’ and the latter in a post from February 2013 entitled, ‘Pre-hospital airway management for patients with OHCA’.

Since these blog posts were written, additional evidence has been published and it will be interesting to see what conclusions there are from the SEERS/CoSTR process.

In the Basic Life Support (BLS) section, one question stood out as of particular interest:

 Passive ventilation techniques

Among adults and children who are in cardiac arrest in any setting (P), does addition of any passive ventilation technique (eg positioning the body, opening the airway, passive oxygen administration) to chest compression-only CPR (I), compared with just chest compression-only CPR (C), change Survival with Favourable neurological/functional outcome at discharge, 30 days, 60 days, 180 days AND/OR 1 year, Survival only at discharge, 30 days, 60 days, 180 days AND/OR 1 year, ROSC, bystander initiated CPR, oxygenation (O)?

The subject of passive oxygenation has been covered in two blog posts on this site. The first, published in April 2012, asked the question, ‘Should we be passive about oxygenation?’ and the second, in October 2013, entitled, ‘Passive oxygenation – the jury is still out’, concluded that,

‘…whilst there appears to be very little new published data, passive oxygenation remains a subject of lively debate in resuscitation circles and is often mentioned in articles reviewing ventilation strategies and airway management in cardiac arrest. Before it slips from view due to a lack of new evidence, it is hoped a new wave of studies are already in progress and will soon emerge as peer reviewed published studies in the near future, enabling a more conclusive assessment to be made as to whether passive oxygenation has a useful role to play during CPR. Without doubt, at the present time, the jury remains out.’

I will be interested to see the conclusions  from the SEERS/CoSTR process on this very interesting subject.

There are many other questions of interest in the ALS and BLS sections, as well as in the Neonatal, Paediatric and Education sections, including use of Impedance Threshold Devices, Induced Hypothermia and Exhaled CO2 detection and esophageal detection devices.

As a big sports fan, I am looking forward to both the European Games and the Rugby World Cup, as well as the Cricket World Cup. However, even these major upcoming sporting events are not anticipated with quite the same excitement as Resuscitation 2015 – The Guidelines Conference! I just can’t wait!

Pre-hospital airway management – the debate continues

 In a recent editorial published in Resuscitation, entitled ‘Pre-hospital airway management: The data grows rapidly but controversy remains’, David Lockey and Hans Morten Lossius discuss the results from three studies published in the same issue:

1. An update of out of hospital airway management practices in the United States.

2. Higher insertion success with the i-gel supraglottic airway in out-of-hospital cardiac arrest: A randomised controlled trial.

3. The impact of airway management on quality of cardiopulmonary resuscitation: an observational study in patients during cardiac arrest.

An update of out of hospital airway management practices in the United States

Digges et al utilised the 2012 National Emergency Medical Services Information System (NEMSIS) Public-Release Research Data Set to examine over 19 million EMS activations. This included 74,993 intubations, 21,990 alternate airway patient care events (confirmed as either a Combitube®, Esophageal Obturator, Laryngeal Mask Airway or King LT®) and 1,332 Cricothyroidotomys. BVM ventilation was undertaken on 56,025 occassions and there were 54,241 oropharyngeal airway (OPA) and 404,828 nasopharyngeal airway (NPA) interventions.

Overall intubation success was 85.3%. Alternate airway success rates were 79.6% overall. The most successful of these was was the King LT® (89.7%) and the least successful the Esophageal Obturator (38.0%).

It is interesting to make some comparison of these results to an earlier examination of the same database for EMS activations four years earlier in 2008. The earlier study included fewer states, so any comparison must be undertaken with caution, but the alternate airway devices recorded as having been used were the same in both reports.

This is worth noting, as the alternate airway devices used are quite different from those used in some other markets such as the UK. As reported in a previous blog post, in the Adult ALS chapter of the Resuscitation Council (UK) 2010 Resuscitation Guidelines, it is confirmed that ‘The Combitube® is rarely, if ever, used in the UK and is no longer included in these guidelines’, and in addition that the Laryngeal Tube (LT) ‘is not in common use in the UK’. What about the rest of Europe? In the 2010 European Resuscitation Council (ERC) Guidelines for Resuscitation, it is stated that ‘Use of the Combitube® is waning and in many parts of the world is being replaced by other devices such as the LT’. In the two papers utilising the NEMSIS data discussed in this blog post, there is no mention of the newer 2nd generation SADs such as the i-gel® and LMA Supreme® which are in regular use in many countries.

In an editorial published in 2009 in Resuscitation, the official journal of the European Resuscitation Council, entitled, ‘Airway management for out-of-hospital cardiac arrest – More data required’, Nolan and Lockey concluded that ‘New airway devices appear frequently but, in our opinion, the three currently available disposable SADs that need to be studied for use during CPR are the i-gel®, the LMA Supreme® and the disposable LT’. Only one of these devices, the LT, was used in the Diggs update of out-of-hospital airway management practices in the United States.

This is significant, as the authors of the update of out of hospital airway management practices in the U.S. state that, ‘This study and many others show that there are problems with out-of-hospital ETI. The results of this study show that alternate airways are not the answer’. As Lockey and Lossius comment, the latter point is a ‘strong and controversial statement’. The latter also make a number of additional important points, including confirmation that ‘although supraglottic devices are clearly not all equal, the highest performing devices have similar success to intubation without the high training burden and risks of oesophageal intubation’.

This leads in nicely to the second study discussed in their editorial:

Higher insertion success with the i-gel® supraglottic airway in out-of-hospital cardiac arrest: A randomised controlled trial.

 Lockey and Lossius introduce the study as follows:

‘Confirming the major difference between the performance of different supraglottic devices, and also published in this issue, is a pre-hospital randomised trial of the second generation i-gel™ device vs an LMA™. Significantly different success rates were demonstrated and the second generation device clearly outperformed the LMA™.’ The laryngeal mask compared to i-gel® in this study was the Portex® Soft Seal® device.

A first generation SAD has been described as a ‘simple airway tube’ and a second generation SAD as ‘incorporating specific design features to improve safety by protecting against regurgitation and aspiration’ (White, Cook and Stoddart)

The paper Lockey and Lossius refer to is a single centre, prospective parallel-group ‘open label’ randomised controlled trial (RCT) in which patients in cardiac arrest were allocated to either the Intersurgical i-gel® supraglottic airway or the Portex® Soft Seal® Laryngeal Mask. The primary outcome was successful insertion as determined by the paramedic who inserted the device.

Fifty-one patients were randomised. Three were not in cardiac arrest, so the final analysis reports on data from forty-eight patients. The Intersurgical i-gel® had an insertion success rate of 90% (18/20) compared to 57% (16/28) with the Portex® Soft Seal® (p=0.023). The authors concluded that:

‘The i-gel® supraglottic airway was associated with higher successful insertion rates in subjects with out-of-hospital cardiac arrest. The i-gel® supraglottic appears easier for paramedics to use and appears a suitable first line supraglottic airway for out-of-hospital cardiac arrest’.

As confirmed earlier, there was no data for i-gel® or a number of the other newer 2nd generation supraglotic airways in ‘An update of out of hospital airway management practices in the United States’ by Diggs et al. Evidence for one supraglottic airway should not be extrapolated to another device with different design characteristics, so their data is only relevant to those devices included.

The impact of airway management on quality of cardiopulmonary resuscitation: an observational study in patients during cardiac arrest

The third paper discussed by Lockey and Lossius is, ‘ The impact of airway management on quality of cardiopulmonary resuscitation: an observational study in patients during cardiac arrest’. This prospective observational study by Yeung et al enrolled 100 consecutive patients between 2008 and 2011 with the aim of determining the effect of advanced airway use, either an endotracheal tube (ET) or laryngeal mask airway (LMA) on the no flow ratio (NFR) and other measures of CPR quality. The control cohort was patients receiving only bag-mask ventilation. The results showed use of an advanced airway during in-hospital cardiac arrest was associated with improved no flow ratios. The primary reason for the improvement appears to be switching from a compression to ventilation ratio of 30:2 to continuous chest compressions and asynchronous ventilation. Further details can be accessed with the earlier link.

A particularly interesting aspect of this paper is the discussion section, where the uncertainties about the role of advanced airways in cardiac arrest are examined. Firstly there is uncertainty about whether ventilation is required at all in the early stages of cardiac arrest (the Yeung et al paper examined patients in the later stage of out-of-hospital or in-hospital cardiac arrest where some form of ventilation is required). They mention the studies from Arizona prioritising Cardio-Cerebral Resuscitation (CCR) over ventilation in the early stages of cardiac arrest.

The timing of airway intervention and any impact on interruptions in chest compressions are also likely to be important. There is discussion regarding interruptions in CPR and the link to reductions in coronary perfusion pressure and development of ventricular fibrillation (VF). The potential impact of supraglottic airways on carotid blood flow, dislodgement of LMAs and aspiration risk are also discussed. All important subjects.

In their editorial, Lockey and Lossius comment that, ‘This study is one of several that demonstrate potential improvements in quality indicators in resuscitation which may be in conflict with large studies with undifferentiated casemix and resuscitation techniques which generally question the value of advanced life support techniques in cardiac arrest or trauma patients.’


So where does all this new data leave us? Lockey and Lossius conclude that ‘Our interpretation of the currently available data on pre-hospital advanced airway management is that the risks and benefits need to be considered for every patient on scene with airway compromise. The management that results from this analysis will depend on the indications and condition of the patient as well as the skills and available interventions on scene.’ This is not entirely dissimilar to the statement in the European Resuscitation Council (ERC) guidelines for resuscitation 2010 in relation to airway management during cardiac arrest, which state that ‘There are no data supporting the routine use of any specific approach to airway management during cardiac arrest. The best technique is dependent on the precise circumstances of the cardiac arrest and the competence of the rescuer.’

With regard to SADs, Lockey and Lossius conclude:

‘The constant evolution of existing supraglottic airways and the introduction of new devices makes generalisation and performance assessment of these devices difficult, but the expanding dataset will hopefully ensure that only the highly performing devices will be used in future studies, thus making interpretation more straightforward’.

No doubt REVIVE#2 will provide some useful additional data in this regard and it is to be hoped that additional randomised controlled trials, similar to the study published by Middleton et al discussed here, will be conducted so the dataset continues to expand.

REVIVE airway study – clinical outcomes and future plans

Since plans were first announced to conduct a randomised comparison of two second generation SADs to current practice in the initial airway management of out-of-hospital cardiac arrest (OHCA) in a UK ambulance service, the results have been eagerly anticipated. This can be no surprise given the paucity of high level evidence to confirm the best technique for maintaining an airway and providing ventilation in adults with cardiopulmonary arrest.

However, the primary objective of REVIVE was not to provide a definitive answer to the above question, but to assess the feasibility of the study design. If REVIVE proved the design was feasible, capable of establishing whether ventilation success can be achieved, and of measuring other key outcomes such as return of spontaneous ventilation and survival to hospital, then it would lay the foundation for a future full-scale study which might just provide us with the answer to the above question.

The REVIVE airway working group presented a poster at the International Conference on Emergency Medicine (ICEM) in Dublin in June last year entitled, ‘Early report of paramedic recruitment in the REVIVE-Airways study’. This confirmed the target of recruiting 150 randomised paramedics and stratification by experience and base station location had been successfully achieved.

Last month, in an abstract presented at the American Heart Association Resuscitation Science Symposium in Dallas, we had our first glimpse of the data related to the clinical outcomes. As this was a feasibility trial and not designed or powered to show clinically significant differences between each device or study arm, there was some discussion as to whether the clinical data should be released. However, the protocol published in the British Medical Journal (BMJ), suggests the original intention had always been to disseminate the clincial data to participants in the study and to the wider public via an open access web-site, appropriate conferences and medical journals.

A more comprehensive overview of the study results was presented at the UWE Conference & Exhibition Centre in Bristol on the 29th November. Speakers included Dr Jerry Nolan, Dr Jas Soar, Prof Jonathan Benger, Dr Matt Thomas, Dr Janet Brandling, Dr Sarah Voss and Mr Dave Coates.

The results showed no significant differences in important clinical outcomes between the use of a supraglottic airway (SAD) and usual practice (principally tracheal intubation) during OHCA. However, the trial was insufficiently powered to detect small differences in mortality. The i-gel® was superior to the LMA Supreme® on several measures, including compliance, adverse events and staff feedback. The investigators are proceeding to a large-scale trial of i-gel® versus tracheal intubation in OHCA.

For the record, the survival to hospital discharge was as follows:

     • i-gel® 10.3%
     • LMA Supreme® 8.0%
     • Usual practice 9.1%


Survival to 90 days is shown below:

     • i-gel® 9.5%
     • LMA Supreme® 6.9%
     • Usual practice 8.6%


Data was also presented on neurocognitive and quality of life outcomes, as well as successful device placement. There was also interesting data regarding the number of arrests attended by each paramedic (March 2012 to February 2013), which ranged from 0-11, with a mean of 3.6 arrests per paramedic. 15 paramedics did not attend any arrest during the study period. There were presentations confirming how the airway was actually managed in practice and feedback from the paramedics that participated in the study.

Successful aspects of REVIVE included proof of the feasibility of a cluster randomised trial of airway intervention in OHCA and the collection of valuable data to inform a full trial. It also demonstrated the strong support of paramedics and informed statistical calculations for a larger study. So, what next?


Professor Jonathan Benger, in a presentation entitled, ‘Further research: REVIVE 2’, confirmed the aims of REVIVE 2 as identifying differences in the primary outcome of modified Rankin Scale (mRS) at hospital discharge: good recovery (0-3) versus poor recovery/death (4-6) and differences in:

• mRS at 3 and 6 months following OHCA
• Quality of life at discharge, 3 months and 6 months
• Cognitive function at 3 and 6 months
• Length of stay
• Ventilation success, regurgitation and aspiration
• Loss of a previously established airway

Comparative cost effectiveness of the i-gel® and intubation, as well as the views and preferences of paramedics is also to be assessed.

It is intended the design will be a cluster randomised trial (by paramedic), with an airway algorithm for each arm. Clinical need will always take precedence and there will be an economic analysis, as well as patient and public involvement. An outline bid has been successful, and a full proposal is to follow (5th February 2014). It is intended for the trial to run for 45 months, from October 2014 to June 2018.

REVIVE 2 will need approximately 1,300 paramedics. This will probably require the inclusion of three or four large UK ambulance trusts. It is estimated the cost for REVIVE 2 will be £2 million. The investigators are ready to begin.

Four and a half years (probably 5 years before the results are reported) may seem a long time to wait for the conclusion of REVIVE 2, but given the lack of high level data currently available regarding the best airway device to use during the initial phase of OHCA, it will be worth the wait.

Passive oxygenation – the jury is still out

As discussed in my blog post from April 2012, ‘Should we be passive about oxygenation?’, in the years preceding the issue of the 2010 European Resuscitation Council (ERC) and Amercian Heart Association (AHA) guidelines on resuscitation, interest in the concept of passive oxygenation, particularly as a component of CardioCerebral Resuscitation (CCR) protocols, appeared to peak. This led to considerable speculation as to how the International Liaison Committee on Resuscitation (ILCOR) would assess the published evidence regarding passive oxygenation compared to standard ventilation techniques and what the subsequent recommendations would be in the new 2010 ERC and AHA guidelines.

In the end, the ERC concluded that, ‘There is insufficient evidence to support or refute the use of passive oxygen delivery during CPR to improve outcome when compared with oxygen delivery by positive pressure ventilation’, and the AHA that, ‘This time there is insufficient evidence to support the removal of ventilations from CPR performed by ACLS providers.’

It might reasonably have been expected that such conclusions would stimulate potential investigators to intensify their efforts to provide the additional evidence needed to enable more conclusive statements in the next set of guidelines, scheduled for issue in 2015. Disappointingly, this has not been the case, so the jury is still out, with little immediate prospect of having significant new evidence to consider.

There may be any number of reasons for this. One possibility is the debate regarding airway management and ventilation in CPR has simply moved on to other areas of interest, such as the optimal airway device. However, if so, it has progressed without really resolving the question of whether passive oxygenation has a useful role to play during CPR, particularly for the first few minutes following witnessed ventricular fibrillation/ventricular tachycardia (VF/VT).

A key question regarding the concept and viability of passive oxygenation as an alternative to standard ventilation during the initial phase of CPR has always been whether chest compressions generate adequate ventilation in cardiac arrest (providing there is a patent airway).

In the 2010 AHA guidelines for CPR (Part 8), in the section on passive oxygenation delivery during CPR, it is stated that:

‘Chest compressions cause air to be expelled from the chest and oxygen to be drawn into the chest passively due to the elastic recoil of the chest. In theory, because ventilation requirements are lower than normal during cardiac arrest, oxygen supplied by passive delivery is likely to be sufficient for several minutes after onset of cardiac arrest with a patent upper airway.’

In their article, ‘Airway techniques and ventilation strategies’, Nolan and Soar, comment that:

‘A study of 17 intubated patients in an emergency department who were undergoing chest compressions using a mechanical compression device (Lund University Cardiopulmonary Assist System (LUCAS)) showed that the median tidal volume per compression was just 42ml – considerably less than the dead space. These patients had been in cardiac arrest for more than 40 min, and therefore, their lung compliance was probably poor. Nevertheless, the implication is that chest compressions alone do not generate adequate ventilation. Despite this, and based partly on further animal data, a group from the Sarver Heart Center in Tucson, Arizona, the United States, has described the use of passive oxygenation insufflation as part of their protocol for CardioCerebral Resuscitation (CCR). This group has recently reported better survival to hospital discharge after witnessed VF cardiac arrest from adults who were managed initially with passive oxygenation (insertion of an oropharyngeal airway and oxygen given at 15L/min by non-rebreather mask) compared with those given active ventilation.’

Perhaps improvements in survival rates, such as those described above, have been due to factors other than passive oxygenation? Most of the studies on passive oxygenation have included multiple treatment changes and/or a number of confounders, so this remains a possibility.

Despite the lack of significant new data, passive oxygenation has continued to be a subject of discussion in a number of recent articles.

In a review article published in ‘Current Opinion in Critical Care’ (COCC), entitled, ‘Advanced life support and mechanical ventilation’, Kill, Dersch and Wulf discuss, amongst other topics, passive oxygenation versus active ventilation. They conclude that:

‘The total number of studies dealing with mechanical ventilation during resuscitation and ALS is still limited. The still recommended standard is positive-pressure ventilation with a tidal volume of 6-7ml/kg and a respiratory rate of 10/min, purse oxygen and preferably with a ventilator. During the first few minutes of CPR, passive oxygen insufflation via a nonrebreathable mask or an airway device might be an acceptable alternative. Hyper-oxygenation should be avoided once a spontaneous circulation is restored, and waveform capnometry is an important monitoring for both ventilation and perfusion of the lungs.’

In another review published in COCC in 2013, entitled, ‘Airway Management in cardiopulmonary resuscitation’, Soar and Nolan confirm that:

‘Some EMS system protocols for adult primary cardiac arrest include airway opening and high-flow face-mask oxygen, and passive oxygenation from chest compressions for the first 6 minutes of CPR. Improved outcomes have been reported with this ‘minimally interrupted’ CPR approach although further study is needed’. A retrospective analysis of adult OHCA patients reported improved neurologically intact survival after witnessed VF/VT OHCA with passive ventilation compared with bag-valve mask ventilation. Survival was similar for unwitnessed VF/VT and nonshockable rhythms. Observational data from large registries in Japan, however, suggest that ventilation is necessary during CPR in children, after cardiac arrest with a primary respiratory cause, and during a prolonged cardiac arrest.’

As well as delivery using a non-rebreather mask and oropharyngeal airway, passive oxygenation, or passive airway management™ (PAM), can be delivered via a supraglottic airway, such as the Intersurgical i-gel O2™, which incorporates a supplementary oxygen port specifically designed for this purpose (figure 1). Such a device may offer advantages over use of a non-rebreather mask, such as providing the opportunity to switch more seamlessly from passive oxygenation to standard ventilation, thereby minimising interruption to chest compressions. However, this is speculation only and has yet to be confirmed by any published evidence.

Connecting a standard oxygen tube to the supplementary port of the i-gel O2 in preparation for the delivery of passive oxygenation

Connecting a standard oxygen tube to the supplementary port of the i-gel O2 in preparation for the delivery of passive oxygenation

In conclusion, whilst there appears to be very little new published data, passive oxygenation remains a subject of lively debate in resuscitation circles and is often mentioned in articles reviewing ventilation strategies and airway management in cardiac arrest. Before it slips from view due to a lack of new evidence, it is hoped a new wave of studies are already in progress and will soon emerge as peer reviewed published studies in the near future, enabling a more conclusive assessment to be made as to whether passive oxygenation has a useful role to play during CPR. Without doubt, at the present time, the jury remains out.

I would be most interested to hear from anyone who is currently using a protocol which incorporates passive oxygenation, is involved in a study incorporating this technique or is looking to conduct such a study in the future.

Use of SADs in the prehospital setting – a new review

Ostermayer and Gausche-Hill, in their review paper, ‘Supraglottic airways: The history and current state of prehospital airway adjuncts’, to be published in Prehospital Emergency Care, provide a much welcome overview on the use of supraglottic airways (SADs) in what can often be a difficult and challenging setting.

The paper begins by confirming that the widespread adoption of SADs in prehospital care ‘directly stems from their ease of use, simplicity of training, predictability, and speed of insertion’. It continues with a brief history of the use of SADs, particularly the Laryngeal Mask Airway, in the prehospital setting and includes individual overviews of a number of devices, including the Combitube®, King LT®, LMA Fastrach® and Intersurgical i-gel®.

There is acknowledgement that whilst SADs do not, in the words of the authors, provide ‘definitive airway management’, some of the newer devices do incorporate higher seal pressures than earlier options and the ability for gastric decompression, which ‘may significantly decrease aspiration risk’.

In anaesthesia circles in particular, a new classification of SADs into 1st and 2nd generation devices has gained considerable popularity and helped to highlight important differences between devices. In a review article by White et al, entitled, ‘A critique of elective pediatric supraglottic airway devices’, a 1st generation device was described as a ‘simple airway tube’ and 2nd generation as a device that ‘incorporates specific design features to improve safety by protecting against regurgitation and aspiration.’

Of course, as mentioned in an earlier blog post on the classification of supraglottic airways, designation as a 2nd generation device does not in itself confirm superiority of performance, but the classification does provide useful information about basic product design characteristics, such as whether the device incorporates a mechanism for the management of regurgitant fluid. These are important considerations when deciding the most appropriate SAD to use in the pre-hospital setting.

Discussion on the use of airway devices in the austere environment states that data collection from Combat Support Hospitals in 2008 demonstrated that 86.3% of prehospital managed airways were managed with an Endotracheal tube (ETT), 7.2% with an Esophageal Tracheal Combitube (ETC) and 0.7% with an LMA, and that, ‘although the ETC is the standard rescue airway device for the U.S. Army, poor skill retention has been demonstrated with the device among medics.’

RSA or Rapid Sequence Airway placement, the insertion of an alternative airway, such as a SAD, after pharmacological treatment with a paralytic and sedative is discussed. This is an important subject and Ostermayer and Gausche-Hill confirm that no trials have yet compared the risks and benefits of drug-assisted SAD placement to non-drug-assisted placement.

The final section of the review takes a look at airway management in Out-of-Hospital Cardiac Arrest (OHCA). Of particular interest is a reference to a Japanese study which looked at neurological outcomes in patients where an ETT was used, compared to either a SAD or Bag Valve Mask (BVM). The results are interesting, but it is important when reviewing such studies to consider the SADs that were used. Results are likely to be quite different for 2nd generation SADs such as the i-gel, compared to a 1st generation device such as a standard Laryngeal Mask Airway. In some countries like the UK, devices such as the Combitube® are now rarely, if ever used. This issue is discussed in more depth in my blog post, ‘Pre-hospital airway management for patients with OHCA’.

There are a couple of small errors in the ‘early view’ version of this paper. For example, in Table 1, the i-gel® is designated as reusable, whereas the device is in fact single use. No doubt these errors will be corrected in the final published version.

In summary, this review paper provides an interesting overview of the history and current state of prehospital airway adjuncts. The conclusion will reflect the thoughts of many with regard to this subject:

‘Since prehospital airway management devices largely evolve from the field of anesthesia, much of the medical literature regarding new devices focuses on the operating room. With the many obvious practical and clinical differences between these clinical settings, further studies in the prehospital environment are needed, specifically trials correlating neurologic outcome to supraglottic device’

Equally important will be to ensure that results for one type of SAD are not extrapolated to another with quite different design characteristics. Tempting as it may be to discuss SADs as if they are one homogenous group of devices, the reality, as this paper helps to highlight, is that the performance of each device can and will be quite different. One SAD is most definitely not the same as another. Further data regarding the use of SADs in the prehospital setting is eagerly awaited.

Use of SADs during neonatal resuscitation

In June this year, an interesting discussion article was published in Resuscitation by Schmölzer et al, entitled, ‘Supraglottic airway devices during neonatal resuscitation: An historical perspective, systematic review and meta-analysis of available clinical trials’.

This is a welcome review. Whilst The World Health Organisation (WHO) report that neonatal mortality rates have declined from 32 per 1,000 births in 1990 to 22 per 1,000 births in 2011, a reduction of over 30%, the proportion of child deaths which occur in the neonatal period has increased in all WHO regions over the last 20 years. In an analysis of neonatal mortality – situation and trends, WHO state that prematurity is the leading cause of newborn deaths and that up to two thirds of newborn deaths could be prevented if skilled health care workers perform effective health measures at birth and during the first week of life.

The WHO Guidelines on Basic Newborn Resuscitation 2012 confirm that globally, approximately a quarter of neonatal deaths are caused by birth asphyxia, defining birth asphyxia as the failure to initiate and sustain breathing at birth. The guidelines go on to state that ‘effective resuscitation at birth can prevent a large proportion of these deaths’.

Schmölzer et al state that the International Liaison Committee on Resuscitation (ILCOR) and various national guidelines all agree that, ‘mask ventilation is the cornerstone of respiratory support immediately after birth.’ However, delivery room studies have shown that mask ventilation is difficult and mask leak and airway obstruction are common. In light of this, it is interesting to consider, as Schmölzer et al have done, what role supraglottic airways might have in neonatal resuscitation and examine the current evidence base for their use.

Current neonatal guidelines, such as those issued by the American Heart Association (AHA), state that Laryngeal Mask Airways (LMs) have been shown to be effective for ventilating newborns weighing more than 2kg or delivered ≥ 34 weeks gestation, and that there are limited data on the use of these devices in small preterm infants <2kg or <34 weeks gestation. The AHA guidelines also confirm that, ‘A laryngeal mask should be considered if facemask ventilation is unsuccessful and tracheal intubation is unsuccessful or not feasible. The laryngeal mask has not been evaluated in cases of meconium-stained fluid, during chest compressions, or for administration of emergency intratracheal medications.’

Perhaps unsurprisingly, Trevisanuto et al reported that although 35% of Italian anaesthetists and 23% of paediatricians have experience with LMs for airway management in newborn infants, anaesthetists were more enthusiastic about the LM than paediatricians. Schmölzer et al confirmed that although there are various studies comparing LMs, randomised trials comparing the performance of each LM are warranted.

There is a meta-analysis of randomised trials (RCT) in the Schmölzer et al review, which concludes that, ‘Overall, RCTs have shown that initial respiratory support with a LM is feasible and safe. However, there is not enough evidence to recommend LM instead of mask ventilation for initial respiratory support in the delivery room and large randomised trials are warranted before the technique is widely applied.’

The review also discusses the potential of supraglottic airways as a conduit for the administration of surfactant. An important subject, particularly given that surfactant administration via an ET tube has been associated with a series of adverse events. The review notes that, ‘although pilot data are promising, the current available evidence suggests that surfactant administration via laryngeal mask should be limited to clinical trials.’

At the 54th Annual Meeting of the European Society for Paediatric Research in Porto in October this year, three posters are being presented regarding the use of supraglottic airways in neonatal resuscitation. The first is entitled, ‘The relationship between successful insertion of a neonatal sized i-gel and a health care provider’s profession or experience’, by Sugiura et al from Shizuoka, in Japan. The second, from the same group of investigators, is entitled, ‘Randomised controlled study comparing a neonatal sized i-gel and the Laryngeal Mask Airway in a neonatal resuscitation mannequin.’ The third is entitled, ‘Higher success rate and operator satisfaction with i-gel laryngeal mask airway compared to face mask: A mannequin study of neonatal resuscitation in Uganda’, by Pejovic et al, from Stockholm in Sweden, Padua in Italy, Kampala in Uganda and Bergen in Norway.

It will not be possible to draw any conclusions from these posters, so the authors will no doubt conclude that further research is required. Of significance is the potential benefits of using supraglottic airways during neonatal resuscitation compared to a BVM or ET tube being discussed and studied, and the recognition that all supraglottic airways are not the same.

The latter point is important. Evidence for one supraglottic airway should not be extrapolated to another device with different design characteristics.

Further data regarding the potential use of supraglottic airways in neonatal resuscitation is awaited with great interest.

Airway management in a combat zone

Most discussions regarding airway management probably relate to use of airway devices during anaesthesia, in-hospital and out-of-hospital cardiac arrest (OHCA) and Emergency Medicine (EM). Each of these disciplines presents its own challenges, but perhaps the most hostile and challenging environment in which to manage the airway is during combat by those involved in Special Operations Medicine (SOM).

A report published in the Spring 2013 edition of the Journal of Special Operations, entitled, Proposed Change: Supraglottic Airways Committee on Tactical Combat Casualty Care (CoTCCC) Recommendation Paper, included a review of the use of Endotracheal Intubation (ETI) v Supraglottic Airways (SGA) and Surgical Airways v SGAs.

Many of the discussion points regarding use of ETI v SGAs will be familiar to most civilian practitioners of airway management and much of the evidence presented in the paper relates to non-military, non-combat situations. However, the paper does note that ETI ‘has been reported to be accomplished by military physicians on the battlefield with a success rate comparable to that achieved in the civilian setting.’ It also makes the point that intubating a trauma patient without sedation and paralysis will be difficult and that training courses that emphasise use of ETI and SGAs, often don’t discuss how to intubate or insert an SGA in a non-comatose patient.

Referencing a 2011 study by Timmerman, the paper also highlights that ‘SGAs may not be well tolerated by casualties who are not unconscious and may not be effective in casualties with direct airway trauma. The ideal casualty for SGA use is one who is unconscious and has no direct maxillofacial or neck trauma.’

The section discussing Surgical Airways v SGA is particularly interesting. Clearly, airway management in combat is not the same as management of a cardiac arrest patient in a civilian setting. The most common cause of airway death in combat casualties is maxillofacial trauma, with the result that management of the airway may be ‘complicated by blood, distorted anatomy, and a struggling patient.’

Referencing the manual by Butler et al, entitled, Prehopsital Trauma Life Support Manual (7th edition) – Military Version, published in 2010, the paper states that , ‘Many casualties with isolated maxillofacial injury can protect their own airways by simply sitting up, leaning forward, spitting out the blood in their airway and continuing to breathe in that position. Surgical airways should be reserved for those casualties in whom this strategy is not successful at maintaining an adequate airway. Maxillofacial injury should not trigger a knee-jerk reflex for the medic to attempt a surgical airway.’ Nonetheless, the TCCC noted that a surgical airway was the airway procedure of choice in a combat casualty when the airway is compromised by direct maxillofacial trauma.

There is an interesting discussion regarding pre-hospital cricothyroidotomy and the records from the Joint Theater Trauma Registry, including the differences in failure rates for cricothyroidotomy between combat medics, physicians and physicians’ assistants and the caution that should be exhibited when interpreting this data. There is also a review of some of the published evidence regarding different types of SGA, including the Laryngeal Mask Airway, LMA ProSeal® , Combitube®, King LT and the i-gel. Inevitably, since this report was completed last year, additional evidence has been published regarding the civilian use of SGAs and ETI during cardiac arrest, which the committee may have wanted to include had it been available to them.

The conclusions of the report include the following:

  • The recommendation for supraglottic airway use in Tactical Evacuation Care should be expanded to include SGAs other than the Laryngeal Mask Airway and Combitube®.
  • Use of SGAs is recommended as both a combat medic and a combat paramedic skill.
  • Casualties who are unconscious from haemorrhagic shock or severe Traumatic Brain Injury (TBI) but who have not suffered direct airway trauma are likely to be the best candidates for SGAs among the combat wounded.
  • Casualties who are able to tolerate either ETI or SGA without sedation and paralysis are likely to have a poor prognosis.

Sadly, the latter refers to the point that the among the combat wounded, the most common causes of unconsciousness are haemorrhagic shock and severe TBI. Both associated with high mortality.

Clearly, there are many combat situations where management of the airway is best achieved by techniques other than insertion of an SGA. However, when use of an SGA is indicated or appropriate, it would seem sensible that the device should be one which can be reliably inserted quickly and easily, incorporates a gastric channel to reduce the risk of aspiration (compared to an SGA without a gastric channel) and has a high seal pressure. A 2nd generation SGA would therefore probably seem a more logical choice than a 1st generation SGA.

Whilst this paper concluded that the recommendation for supraglottic airway use in Tactical Evacuation Care should be expanded to include SGAs other than just the Laryngeal Mask Airway and Combitube®, it did not make any specific recommendation regarding use of 2nd generation devices. This may be an interesting area for the committee to consider in any future review.

The Journal of Special Operations Medicine web-site can be accessed at the following web address