Paediatric i-gel® – a review of the latest evidence

8202

In a blog post written in December 2012, the question was asked as to whether paediatric i-gel® was an advance over other supraglottic airways? The article reviewed the evidence already published and concluded that:

‘Clinical evidence takes time to build, and some of the studies looked at one size only and all studies have limitations. However, the above evidence suggests i-gel may yet prove to be “a genuine improvement on the pLMA”, as thought possible by White, Cook and Stoddart back in 2009.’

This was a reference to a comment in the excellent review article ‘A critique of elective pediatric supraglottic airway devices’ pubished in Pediatric Anesthesia by White et al, which aimed to present the evidence surrounding the use of currently available supraglottic airways (SADs) in routine paediatric anaesthetic practice. It was also one of the first papers to divide SADs in to first and second generation devices, although the first paper to describe the classification fully was ‘Recent developments in efficacy and safety of supraglottic airway devices’ by Cook and Howes. In the White et al review, first generation devices were described as simple airway tubes, and second generation devices, such as i-gel®, as incorporating ‘specific design features to improve safety by protecting against regurgitation and aspiration’.

The White et al review concluded that ‘The pLMA has yet to be outperformed by any other SAD, making it the premier SAD in children and the benchmark by which newer second generation devices should now be compared’.

Five years on and almost 2 years since my earlier blog post, what additional evidence has been published for the paediatric sizes of Intersurgical i-gel® and does this new data help us to draw a more definitive conclusion to the question I asked back in 2012?

The new data includes two meta-analyses and a number of comparative studies. There are also some interesting letters, review articles and one survey of current UK practice for paediatric SADs. The data ranges from an assessment of the effect of the device on intraocular pressure in paediatric patients who received sevoflurane or desflurane during strabismus surgery to fibreoptic assessment of laryngeal positioning to a clinical evaluation of airway management with the device during MRI examination.

The two meta-analyses were both published in 2014. The first, ‘A systematic review and meta-analysis of the i-gel vs laryngeal mask airway in children’ by Choi et al included nine Randomised Controlled Trials (RCTs) comparing i-gel to different types of laryngeal mask in children. The different types of laryngeal masks were the LMA ProSeal® (pLMA), the LMA Classic® (cLMA), the LMA Supreme® (sLMA) and the Ambu® AuraOnce™ (ALMA).

All four of these devices are quite different in design, and although there is a subgroup analysis for the different types of device, the overall conclusions are a comment on i-gel® in comparison to all the laryngeal masks as a collective group. The conclusions were that, ‘i-gel was similar to LMAs when used in children and delivered ventilation pressures 3cm H20 higher than LMAs. Few complications were reported with either airway.’

The other meta-analysis, ‘Evaluation of i-gel airway in children: a meta analysis’, by Maitra et al and published in Pediatric Anesthesia, included nine RCTs where i-gel® had been compared to the cLMA and/or the pLMA . The authors concluded that ‘The i-gel® airway is at least equally effective with laryngeal mask airway ProSeal and laryngeal mask airway Classic and provides a significantly higher oropharyngeal leak pressure than both the laryngeal masks.’ The authors of both meta-analyses acknowledge a number of limitations to their papers. An important consideration is certainly whether any statistically significant differences identified between devices are also clinically significant. i-gel

A particularly interesting article, published in 2013, is ‘Current practice of pediatric supraglottic airway devices – a survey of members of the Association of Paediatric Anaesthetists of Great Britain and Ireland (APAGBI)’. It assessed usage of SADs in routine and difficult airways in the UK by distributing a survey with sixteen questions to all UK members of the APAGBI. Two hundred and fourty-four members replied.

88% ‘favoured’ first generation SADs for routine use and 85% ‘preferentially’ for use in the failed intubation scenario. As the pLMA, a second generation device, is often considered the premier SAD for use in children, this is perhaps a little surprising. In fact, only 1% of responders confirmed the pLMA as their first choice/usual SAD. 49% would never use a SAD on a patient weighing less than 5kg. Only 15% ‘felt that an esophageal drainage tube was an important feature.’

The authors confirm that, ‘Fibreoptic guided intubation via an SAD is used electively by 46% of respondents, and only 3% regularly employ this technique. 17% have used the technique in an emergency, 20% have only practiced it on a manikin, and 9% have never used or seen this technique in any situation.’

With regard to i-gel, 37% of respondents reported they had access to the device. This compared to 25% with access to the pLMA and 14% to the sLMA. However, only 1% confirmed i-gel® as their first choice/usual SAD. The same percentage as reported for the pLMA. 87% had access to a classically shaped laryngeal mask airway, with 77% using it as their first-choice/usual SAD. Only 15% considered an esophageal drain channel as an important design feature.

So why the low use and apparent limited interest in second generation SADs, such as i-gel® and the pLMA amongst members of the APAGBI? The authors suggest there may be a number of reasons for the slower adoption than with the adult sizes, such as paediatric sizes coming onto the market later than adult sizes, the bulkier design of paediatric sizes and because aspiration associated with SAD use is seen less frequently and has less morbidity in children when compared with adults. It maybe the potential safety features are therefore considered by paediatric anaesthetists to be less essential.

The authors conclude that, ‘Research currently has little influence over the choice of which SAD to use, which is more likely determined by personal choice and departmental preference.’

Whilst writing this review, two additional papers of interest were published in Anaesthesia. The first, ‘A performance comparison of the paediatric i-gel with other supraglottic airway devices’ by Smith & Bailey includes data from fourteen RCTs and eight observational studies. The authors conclude that, ‘the i-gel is at least equivalent to other supraglottic airway devices curently available for use in children, and may enable a higher oropharyngeal leak pressure and an improved fibreoptic view of the glottis.’

The other paper is a particularly interesting editorial, entitled, ‘Which supraglottic airway will serve my patient best?, also published in Anaesthesia. Whilst not specifically focussed on paediatric SADs, the paper mentions two of the meta-analyses discussed in this blog post.

The authors Kristensen, Teoh and Asai consider how the ‘right’ device should be chosen, when a new device can be introduced into clinical practice, the role of manikin studies and manufacturer’s responsibilities. They also discuss the ADEPT guidance formulated by the Difficult Airway Society (DAS).

The authors comment that, ‘Until significantly better features of a new airway device relating to clinically important outcome measures have been shown, we should be cautious about replacing the conventional device with a new one…We can judge whether or not a new device has a clinically meaningful difference (superiority) to the conventional device, mainly by assessing the results of randomised controlled studies and meta-analyses. Nevertheless, if randomised controlled studies only show statistically significant differences that are not clinically meaningful, the reports of meta-analyses will not provide clinically meaningful information for our decision making.’

So what conclusions can we draw from the new data published for i-gel? Is the device superior to other paediatric supraglottic airways already available? Well, the new data is varied in subject matter, includes a number of RCTs, comparative studies and meta-analyses. Most of the data is encouraging and some possible advantages have been identified. However, there are always areas where more data is required or desirable. I will leave you to review the evidence for yourself and draw your own conclusions.

Note:
i-gel is a registered trademark of Intersurgical Ltd. LMA Classic, LMA ProSeal, LMA Unique and LMA Supreme are registered trade marks of the Laryngeal Mask Company Ltd. cLMA, pLMA, and sLMA are abbreviations used in some journal articles. They refer to the LMA Classic, LMA Proseal and LMA Supreme respectively. Ambu is a registered trademark of Ambu A/S.

The bougie – is it immortal?

Despite the technique of using an introducer to facilitate intubation being described over 65 years ago, the bougie, or tracheal tube introducer, remains a popular airway adjunct. With the development of more hi-tech aids to manage the airway, such as video laryngoscopes, is the demise of the bougie imminent or is it destined for immortality?

As Dr J J Henderson confirmed in correspondence entitled, ‘Development of the gum-elastic bougie’ – published in Anaesthesia in 2003, although Robert Reynolds Macintosh, who designed the Macintosh Laryngoscope – described by Sir Anthony Jephcott  as, ‘the most numerously and widely made durable item in the history of anaesthesia’ – is usually given credit for the first use of introducers to facilitate tracheal intubation, the technique was described a year earlier by Minnitt & Gillies in their ‘Textbook of Anaesthetics’, published by E & S Livingstone Ltd in 1948.

Dr Henderson confirms that in relation to passage of a tracheal tube with the Macintosh laryngoscope, the Minnitt & Gillies publication suggested, ‘This is an easy matter when a semi-rigid gum elastic catheter is passed’. 

 Sir Robert Macintosh (1897 – 1989), knighted in 1955, described the technique in his landmark illustrated 1949 article entitled, ‘An aid to oral intubation’ as follows:

 ‘One of the difficulties in passing tubes beyond a certain size is that the body of the tube obscures the view of the cords through which the tip must be directed. In order to overcome this I thread the tube over a long gum-elastic catheter, the tip of which is then passed through the cords under direct vision. Using the catheter as a guide, the tube is gently pushed down into position and the guide is then withdrawn.’

A few years later in 1952, responding to correspondence from a Dr Rook, Barnard (Anaesthesia 1952;7:119) described a technique he found of practical value when for any reason intubation proved difficult:

‘A small gum-elastic bougie is pushed through the Magill’s tube until about two inches extend beyond the distal end. The bougie is then bent forwards at an angle of 45 degrees or less. A Macintosh’s laryngoscope is passed and the bougie is passed through the larynx. The Magill’s tube is then passed well into the trachea and the bougie is removed’.

Use was not widespread until after the introduction of the Endotracheal Tube Introducer by Eschmann Bros & Walsh Ltd in the 1970s. This device incorporated a coudé tip, one of a number of differences to the device originally described by Macintosh in 1949. Dr Venn, who designed the device whilst working as an anaesthetic advisor to Eschmann, has described the development of the bougie in correspondence published in Anaesthesia in 1993 and the story was expanded further by Dr Henderson, from additional information provided by Dr Venn, in an article entitled, ‘Development of the gum-elastic bougie’ published in the same journal ten years later.

One irony is, as El-Orbany et al noted in Anesthesiology in 2004, the Eschmann Tracheal Tube Introducer is not gum, elastic or a bougie. The gum elastic bougie was originally a urinary catheter designed for dilation of urethral strictures. The material of the Eschmann device was different in that it had two layers: a core of tube woven from polyester threads and an outer resin layer. Other differences were the length, longer at 60cm, to allow the railroading of an endotracheal tube and the ‘presence of a 35 degree curved tip, permitting it to be steered around obstacles’.

Since its introduction, the bougie, or tracheal tube introducer, has grown in popularity, and whilst an equipment list for management of the difficult airway might include a number of different types of devices and airway adjuncts, such as alternative styles of rigid laryngoscope blades, supraglottic airways, video laryngoscopes and flexible fibreoptic intubation equipment, it is also likely to include some form of tracheal tube introducer or guide – single use or reusable.

The Difficult Airway Society (DAS) 2005 list of recommended equipment for routine airway management includes a ‘Tracheal tube introducer (gum-elastic-bougie)’ and an ‘Introducer (bougie)’ is included as part of ‘Plan A: Initial tracheal intubation plan’ in the DAS algorithm for ‘Unanticipated difficult tracheal intubation – during routine induction of anaesthesia in an adult patient’. Intubating bougies are also mentioned in the section on Recommendations for Extubation in the ‘Practice Guidelines for Management of the Difficult Airway’ , an updated report by the American Society of Anesthesiologists (ASA) Task Force on Management of the Difficult Airway, published in 2013.

Single use alternatives from a variety of manufacturers have been available for a number of years, and the Association of Anaesthetists of Great Britain and Ireland (AAGBI) Safety Guideline document, Infection Control in Anaesthesia, published in 2008, states:

Bougies: ‘Re-use of these items has been associated with cross-infection. Manufacturers recommend that a gum elastic bougie may be disinfected up to five times between patients and stored in a sealed packet. It is preferable that alternative single-use intubation aids are employed where possible.’

Even a cursory search of the published literature relating to tracheal tube introducers produces literally hundreds of studies, case reports and correspondence, comparing different types of introducers and a variety of potential extended applications, as well as the effects of sterilisation on multi-use devices, (Anaesthesia, 2011, 66, pages 1134 – 1139), and the forces required to remove bougies from tracheal tubes (Anaesthesia, 2009, 64, pages 320 – 322). There is even a report, published in Anaesthesia in 2007, regarding a home-made bougie. A quite alarming story in this modern age of device regulation, the author describes fashioning a bougie in Indonesia from a wire coat hanger and an ordinary giving set whilst waiting for a bougie to arrive from England! The author used the device on more than 40 occasions, commenting that, ‘In four patients I do not think I would have been able to intubate the trachea without it.’

It seems the bougie continues to be perceived as a useful airway adjunct for the persistent epiglottis-only view, but as Dr Richard Levitan has described in his overview of the Bougie (Tube Introducer), ‘The bougie is not a heat seeking missile, i.e., it does not ‘find’ the trachea automatically; laryngeal landmarks, i.e. the epiglottis at a minimum, or preferably the posterior cartilages must be sighted to place the bougie in the trachea.’

Given that many airway conferences now often include a debate comparing direct laryngoscopy to video laryngoscopy and provocatively ask whether the days of the standard laryngoscope are numbered, it is interesting that even those who feel the value of a bougie may sometimes be overstated, do not seem to suggest the bougie is in imminent danger of being consigned to the history books as a relic of anaesthesia practice from days gone by. Perhaps the bougie is immortal?

NAP4 – two years on

NAP4, the 4th National Audit Project of the Royal College of Anaesthetists (RCoA) and the Difficult Airway Society (DAS) on ‘Major Complications of Airway Management in the United Kingdom’, was published in March 2011.

Two years on, the key findings of the report continue to resonate. These include:

  • A high failure rate of emergency cannula cricothyroidotomy
  • Failure to correctly interpret a capnograph trace leading to several oesophageal intubations going unrecognised in anaesthesia.
  • Numerous cases where awake fibreoptic intubation (AFOI) was indicated but was not used.
  • Problems arising when difficult intubation was managed by multiple repeat attempts at intubation.

Poor airway assessment, a failure to plan for failure and poor judgement were also identified as key clinical themes in a number of the cases reported. Such is the breadth of NAP4, that the above represent little more than a highly selective short-list.

Interestingly, when the report was launched, one of the authors highlighted in a presentation on ‘Aspiration of gastric contents and of blood‘, which can be seen as a podcast on the RCoA web-site, that ‘there’s nothing new in NAP4’, referring to the fact that one of the major findings of the report (perhaps the major finding?), that aspiration of gastric contents was the single commonest cause of death in anaesthesia events, was also the finding of a report published in Anaesthesia way back in 1956 entitled, ‘Deaths associated with anaesthesia: A report on 1,000 cases‘. So, despite all the advances in airway management and anaesthesia over the last 50 years, aspiration remains a major concern.

For many, I am sure NAP4 did highlight a lot that was new, or at the very least, NAP4 probably provided evidence to support what logic and personal experience had suggested might be true. The ultimate judgement on the success of the report may only become evident in the years ahead, when it can be assessed what practical changes have been made in light of the many recommendations of the report.

A number of posters and abstracts at national and international conferences have already assessed or reported on changes implemented in their departments in the light of NAP4. At the annual DAS meeting in 2011, these included the following:

Audit comparing supraglottic airway (SAD) device use at a DGH to NAP4 guidelines. Thomas S – This poster reported on SAD use in obese patients, use in procedures with risk of reflux or previous difficult intubation and supraglottic training and awareness of NAP4.

Post NAP4 – Implications for intensive care nursing. Lamb RG et al – A report on a project looking at basic awareness of ICU nursing staff regarding Rapid Sequence Induction (RSI) and their familiarity with difficult airway equipment. The results were used to assess the need for further education of nursing staff who may be expected to assist with RSI.

Capnography use in ICU. Measuring up to NAP4. Cole S et al – A poster reporting on the results of a survey to measure capnography use in ICUs across Scotland and to describe factors influencing use.

Capnography use outside of theatres in the Northern Deanery before and after publication of NAP4. Metcalfe SE et al – An audit on use of capnography in the UK for patients undergoing anaesthesia and being intubated irrespective of location.

Some of the recommendations of NAP4, such as each department of anaesthesia having a ‘Departmental Airway Lead’, have long been advocated by the UK Difficult Airway Society. Many hospitals already have an airway lead, but following discussions between DAS and the RCoA, the college council has endorsed a strong recommendation that all anaesthesia departments should conform with this NAP4 recommendation. The responsibilities of the position should include, the overseeing of local airway training, ensuring local policies exist and are disseminated for predictable airway emergencies, liasing specifically with ICU and emergency departments to ensure consistency, and ensuring that difficult airway equipment is appropriate to the local guidelines and standardised within the organisation.

Further potential responsibilities have also been outlined. The RCoA intends to maintain a database of departmental airway leads. DAS also plans two follow-up surveys to study the impact of NAP4. A National survey of institutional responses to NAP4 and a national ‘sprint audit’ to collect national data on practice and activity over a short period. We await the results with interest. See the DAS Newsletter – Projects Edition December 2012 pp6-7 for further details

NAP5 – Accidental Awareness during General Anaesthesia in the United Kingdom, has just been published, but two years on from publication, its predecessor remains essential reading.

Classification of supraglottic airways

Early classification and scoring systems for supraglottic airways
In recent years, a number of attempts have been made to categorise supraglottic airways (SADs). In 2004, A Proposed Classification and Scoring System for Supraglottic Sealing Airways: A Brief Review by Miller was published in Anesthesia & Analgesia. This categorised SADs by the sealing mechanism. Three primary groups were identified:

  • Cuffed perilaryngeal sealers – such as the Laryngeal Mask Airway®
  • Cuffed pharyngeal sealers – such as the Cuffed Oropharyngeal Airway (COPA®)
  • Uncuffed anatomically preshaped sealers – such as i-gel®

This classification was further subdivided, so cuffless perilaryngeal sealers could be either ‘directional’ or ‘non-directional’, and cuffed pharyngeal sealers could be designated as ‘with’ or ‘without’ oesophageal sealing. The sealing mechanisms were described in detail, in conjunction with force vectors, frictional force and whether a device was reusable or single-use; or incorporated a mechanism to provide additional protection against aspiration. Whatever the merits of this system, it now appears unnecessarily complex, although to be fair, Miller’s objective was limited to providing a consistent method for evaluating and understanding the mechanisms of action of any given SAD.

In the same paper, Miller provided a provisional scoring of airways, which suggested a number of desirable features appropriate for a SAD for routine use in anaesthesia. This included easy insertion by a non-specialist, stable airway once positioned, sufficient sealing quality to apply positive pressure ventilation, a good first-time insertion success rate, minimal associated risk of aspiration, and minimal risk of cross-infection and serious side effects. These attributes remain valid today, although to this list we could probably now add latex free and atraumatic, requiring minimal training for safe and effective use, incorporation of a bite block, MRI compatibility, and perhaps suitability for use as a conduit for intubation.

International standard for supralaryngeal airways
In 2009, five years after Miller’s paper, the International standard, ISO 11712:2009(E) Anaesthetic and respiratory equipment – Supralaryngeal airways and connectors was published. This standard included five classifications of supralaryngeal designs as follows:

  • Cuffed oropharyngeal airway, where the ventilatory opening is located at the base of the tongue and a sealing surface is located in the oropharynx.
  • Laryngeal masks, where the ventilatory opening is surrounded by the cuff, which forms a seal with the periglottic tissues. The ventilatory opening and the cuff seal usually represent the most distal portion of the device.
  • Pharyngeal or pharyngeal-esophageal tube, where a cuff surrounds the ventilatory tube in a circumferential fashion and is located proximal to the ventilatory opening. This design compartmentalizes the pharynx, with the cuff serving as a sealing divider between the proximal and distal pharyngeal compartments, and the ventilatory opening(s) are located in the distal pharyngeal compartment.
  • Pharyngeal airway liner, which is represented by the streamlined liner pharyngeal airway (SLIPATM). This is a shell-like device that, upon insertion, expands the soft tissues of the neck. The tension of the elastic neck soft tissues that surround the device provides the sealing mechanism. The ventilatory opening is located within the shell in the periglottic area.
  • Device with a soft, gel-like, non-inflatable cuff and widened, concaved buccal cavity stabiliser. The sealing mechanism is created by the soft non-inflatable cuff accurately mirroring the anatomy of the laryngeal inlet to create an impression fit, without the need for cuff inflation.

 This classification did little to reduce complexity.

 1st and 2nd generation devices
In the same year as ISO 11712 was published,  White, Cook and Stoddart, in a review article published in  ‘Pediatric Anesthesia’, entitled, A critique of elective pediatric supraglottic airway devices categorised SADs into 1st and 2nd generation devices. A 1st generation device was described as a ‘simple airway tube’ and 2nd generation as a device that ‘incorporates specific design features to improve safety by protecting against regurgitation and aspiration’. I am not sure if this was the first published description of this method of classification, but its simplicity had immediate appeal, and it quickly became established as the most popular method for classifying SADs.

 It has since been used in numerous published clinical studies, review articles and conference lectures and a number of recommendations regarding use of 2nd generation devices were made in the 4th National Audit Project of the Royal College of Anaesthetists (RCoA) and The Difficult Airway Society (DAS) report, Major complications of airway management in the United Kingdom.

Of course, 2nd generation devices are not all the same, so the clinical evidence for each device regarding safety and efficacy still needs to be reviewed and assessed individually. Designation as a 2nd generation device does not in itself confirm superiority of performance, but the classification does provide useful information about basic product design characteristics, such as whether the device incorporates a mechanism for the management of regurgitant fluid.

In conclusion, although initial classifications of SADs provided some useful information, they were also complex, and as a result never really obtained widespread use or acceptance. The more recent classification of SADs into 1st or 2nd generation devices has proved popular, is widely used and provides valuable information regarding basic product design. Safety and efficacy of individual devices still needs to be reviewed and assessed individually.

A basic diagram highlighting the differences between 1st and 2nd generation devices is shown below (Fig 1). An Infographic, with additional background information, is also available (Fig 2). Please contact me if you would like a pdf copy of the infographic.

Fig 1

Fig 2 – Infographic