Pre-hospital airway management – the debate continues

i-gel O2

In a recent editorial published in Resuscitation, entitled ‘Pre-hospital airway management: The data grows rapidly but controversy remains’, David Lockey and Hans Morten Lossius discuss the results from three studies published in the same issue:

1. An update of out of hospital airway management practices in the United States.

2. Higher insertion success with the i-gel supraglottic airway in out-of-hospital cardiac arrest: A randomised controlled trial.

3. The impact of airway management on quality of cardiopulmonary resuscitation: an observational study in patients during cardiac arrest.

An update of out of hospital airway management practices in the United States

Digges et al utilised the 2012 National Emergency Medical Services Information System (NEMSIS) Public-Release Research Data Set to examine over 19 million EMS activations. This included 74,993 intubations, 21,990 alternate airway patient care events (confirmed as either a Combitube®, Esophageal Obturator, Laryngeal Mask Airway or King LT®) and 1,332 Cricothyroidotomys. BVM ventilation was undertaken on 56,025 occassions and there were 54,241 oropharyngeal airway (OPA) and 404,828 nasopharyngeal airway (NPA) interventions.

Overall intubation success was 85.3%. Alternate airway success rates were 79.6% overall. The most successful of these was was the King LT® (89.7%) and the least successful the Esophageal Obturator (38.0%).

It is interesting to make some comparison of these results to an earlier examination of the same database for EMS activations four years earlier in 2008. The earlier study included fewer states, so any comparison must be undertaken with caution, but the alternate airway devices recorded as having been used were the same in both reports.

This is worth noting, as the alternate airway devices used are quite different from those used in some other markets such as the UK. As reported in a previous blog post, in the Adult ALS chapter of the Resuscitation Council (UK) 2010 Resuscitation Guidelines, it is confirmed that ‘The Combitube® is rarely, if ever, used in the UK and is no longer included in these guidelines’, and in addition that the Laryngeal Tube (LT) ‘is not in common use in the UK’. What about the rest of Europe? In the 2010 European Resuscitation Council (ERC) Guidelines for Resuscitation, it is stated that ‘Use of the Combitube® is waning and in many parts of the world is being replaced by other devices such as the LT’. In the two papers utilising the NEMSIS data discussed in this blog post, there is no mention of the newer 2nd generation SADs such as the i-gel® and LMA Supreme® which are in regular use in many countries.

In an editorial published in 2009 in Resuscitation, the official journal of the European Resuscitation Council, entitled, ‘Airway management for out-of-hospital cardiac arrest – More data required’, Nolan and Lockey concluded that ‘New airway devices appear frequently but, in our opinion, the three currently available disposable SADs that need to be studied for use during CPR are the i-gel®, the LMA Supreme® and the disposable LT’. Only one of these devices, the LT, was used in the Diggs update of out-of-hospital airway management practices in the United States.

This is significant, as the authors of the update of out of hospital airway management practices in the U.S. state that, ‘This study and many others show that there are problems with out-of-hospital ETI. The results of this study show that alternate airways are not the answer’. As Lockey and Lossius comment, the latter point is a ‘strong and controversial statement’. The latter also make a number of additional important points, including confirmation that ‘although supraglottic devices are clearly not all equal, the highest performing devices have similar success to intubation without the high training burden and risks of oesophageal intubation’.

This leads in nicely to the second study discussed in their editorial:

Higher insertion success with the i-gel® supraglottic airway in out-of-hospital cardiac arrest: A randomised controlled trial.

 Lockey and Lossius introduce the study as follows:

‘Confirming the major difference between the performance of different supraglottic devices, and also published in this issue, is a pre-hospital randomised trial of the second generation i-gel™ device vs an LMA™. Significantly different success rates were demonstrated and the second generation device clearly outperformed the LMA™.’ The laryngeal mask compared to i-gel® in this study was the Portex® Soft Seal® device.

A first generation SAD has been described as a ‘simple airway tube’ and a second generation SAD as ‘incorporating specific design features to improve safety by protecting against regurgitation and aspiration’ (White, Cook and Stoddart)

The paper Lockey and Lossius refer to is a single centre, prospective parallel-group ‘open label’ randomised controlled trial (RCT) in which patients in cardiac arrest were allocated to either the Intersurgical i-gel® supraglottic airway or the Portex® Soft Seal® Laryngeal Mask. The primary outcome was successful insertion as determined by the paramedic who inserted the device.

Fifty-one patients were randomised. Three were not in cardiac arrest, so the final analysis reports on data from forty-eight patients. The Intersurgical i-gel® had an insertion success rate of 90% (18/20) compared to 57% (16/28) with the Portex® Soft Seal® (p=0.023). The authors concluded that:

‘The i-gel® supraglottic airway was associated with higher successful insertion rates in subjects with out-of-hospital cardiac arrest. The i-gel® supraglottic appears easier for paramedics to use and appears a suitable first line supraglottic airway for out-of-hospital cardiac arrest’.

As confirmed earlier, there was no data for i-gel® or a number of the other newer 2nd generation supraglotic airways in ‘An update of out of hospital airway management practices in the United States’ by Diggs et al. Evidence for one supraglottic airway should not be extrapolated to another device with different design characteristics, so their data is only relevant to those devices included.

The impact of airway management on quality of cardiopulmonary resuscitation: an observational study in patients during cardiac arrest

The third paper discussed by Lockey and Lossius is, ‘ The impact of airway management on quality of cardiopulmonary resuscitation: an observational study in patients during cardiac arrest’. This prospective observational study by Yeung et al enrolled 100 consecutive patients between 2008 and 2011 with the aim of determining the effect of advanced airway use, either an endotracheal tube (ET) or laryngeal mask airway (LMA) on the no flow ratio (NFR) and other measures of CPR quality. The control cohort was patients receiving only bag-mask ventilation. The results showed use of an advanced airway during in-hospital cardiac arrest was associated with improved no flow ratios. The primary reason for the improvement appears to be switching from a compression to ventilation ratio of 30:2 to continuous chest compressions and asynchronous ventilation. Further details can be accessed with the earlier link.

A particularly interesting aspect of this paper is the discussion section, where the uncertainties about the role of advanced airways in cardiac arrest are examined. Firstly there is uncertainty about whether ventilation is required at all in the early stages of cardiac arrest (the Yeung et al paper examined patients in the later stage of out-of-hospital or in-hospital cardiac arrest where some form of ventilation is required). They mention the studies from Arizona prioritising Cardio-Cerebral Resuscitation (CCR) over ventilation in the early stages of cardiac arrest.

The timing of airway intervention and any impact on interruptions in chest compressions are also likely to be important. There is discussion regarding interruptions in CPR and the link to reductions in coronary perfusion pressure and development of ventricular fibrillation (VF). The potential impact of supraglottic airways on carotid blood flow, dislodgement of LMAs and aspiration risk are also discussed. All important subjects.

In their editorial, Lockey and Lossius comment that, ‘This study is one of several that demonstrate potential improvements in quality indicators in resuscitation which may be in conflict with large studies with undifferentiated casemix and resuscitation techniques which generally question the value of advanced life support techniques in cardiac arrest or trauma patients.’

Conclusion

So where does all this new data leave us? Lockey and Lossius conclude that ‘Our interpretation of the currently available data on pre-hospital advanced airway management is that the risks and benefits need to be considered for every patient on scene with airway compromise. The management that results from this analysis will depend on the indications and condition of the patient as well as the skills and available interventions on scene.’ This is not entirely dissimilar to the statement in the European Resuscitation Council (ERC) guidelines for resuscitation 2010 in relation to airway management during cardiac arrest, which state that ‘There are no data supporting the routine use of any specific approach to airway management during cardiac arrest. The best technique is dependent on the precise circumstances of the cardiac arrest and the competence of the rescuer.’

With regard to SADs, Lockey and Lossius conclude:

‘The constant evolution of existing supraglottic airways and the introduction of new devices makes generalisation and performance assessment of these devices difficult, but the expanding dataset will hopefully ensure that only the highly performing devices will be used in future studies, thus making interpretation more straightforward’.

No doubt REVIVE#2 will provide some useful additional data in this regard and it is to be hoped that additional randomised controlled trials, similar to the study published by Middleton et al discussed here, will be conducted so the dataset continues to expand.

Arthur Guedel and the oropharyngeal airway

One-piece Guedel

Any definitive history of the development of the oropharyngeal airway (OPA) is likely to include reference to Arthur Guedel and the OPA he described in a short article entitled, ‘A nontraumatic pharyngeal airway’ published in the Journal of the American Medical Association (JAMA) in 1933. In little more than a dozen lines he described a device which today is almost synonymous with the term oropharyngeal airway.

Although Joseph Thomas Clover (1825-1882) is credited with first use of an artificial airway, as this was a nasopharnygeal device, it is Sir Frederic William Hewitt (1857-1916) who is usually acknowledged as being first to describe the use of an oropharyngeal airway, in an article entitled ‘An artificial air-way for use during anaesthetisation’, published in The Lancet in 1908.

Hewitt was appointed as anaesthetist to King Edward VII in 1901. He was also a founding member of the Society of Anaesthetists in London and was made a member of the Royal Victorian Order (4th class) in 1902 for personal service to the King. The Frederick Hewitt Lecture was inaugurated by the Royal College of Surgeons (now the Royal College of Anaesthetists), in 1950. Fittingly, the lecture is now given biennially with the Joseph Clover Lecture – two pioneers of airway management appropriately acknowledged for their contribution to anaesthesia and airway management. The names of those anaesthetists who have delivered a Hewitt or Clover lecture reads like a roll call of anaesthetic icons, and includes Sir Ivan Magill, Sir Robert Macintosh, Gordon Jackson Rees and Brian Sellick.

Hewitt and the airway he designed are discussed in a historical note published in Anaesthesia by RP Haridas entitled, ‘The Hewitt airway – the first known artificial oral ‘air-way’ 101 years since its description’. The original airway incorporated a straight rubber tube, but a curved version was later developed. Brimacombe described the Hewitt airway as the forerunner to many modern oropharyngeal airways (Laryngeal Mask Anesthesia. Principles & Practice. Elsevier Ltd. 2nd edition. 2005).

Hewitt was undoubtedly an anaesthetic giant of the late nineteenth and early twentieth century, yet his contribution to anaesthesia and airway management may be less immediately well known than that of Arthur Guedel.

Maltby confirms in ‘Notable Names in Anaesthesia’ that Arthur Guedel was born in Cambridge City, Indiana in 1883. Despite losing three fingers when he was a teenager, Guedel still managed to become an accomplished pianist and composer! His medical career started at the Medical College of Indiana in 1903. After graduating in 1908, he was interned at the City Hospital in Indianapolis where he was required to administer ether and chloroform. He eventually served as an anaesthetist in the American Expeditionary Forces in France in World War One, where the challenges faced by inexperienced personnel from the army medical corps provided the impetus to develop a classification of the stages of anaesthesia.

Guedel also created the first inflatable cuffs for ET tubes, experimenting with location, above, below or at the vocal cords, cuff pressures and possible inflation techniques. Around this time, Guedel would often use his own pet dog, appropriately named ‘Airway’, as part of his lecture demonstrations. Maltby confirms that Airway survived to enjoy ‘an honourable retirement with the Waters family in Madison, Wisconsin.’ A glance at the content of Guedel’s lecture demonstrations from the 1920s suggests that Airway’s survival to retirement was by no means a foregone conclusion and can itself be considered an achievement.

The recipient of the dog, Ralph Waters, wrote a personal tribute to his friend Arthur Guedel in the BJA in 1953 as part of the ‘Eminent Anaesthetists’ series. He confirmed that the saying, ‘If a man loves dogs he will love mankind’ was true of Guedel. He discusses their correspondence, at its most prolific between 1925 to 1945, his athleticism, and his motto for many years, ‘Maintain Flying Speed’, taken from the pilot of the time whose altitude began to fail as his forward progress diminished. Interestingly, he makes no mention of the oropharyngeal airway for which Guedel is perhaps most often remembered today.

Guedel originally described his oropharyngeal airway in JAMA as follows: ‘The airway herewith depicted is made of rubber and is sufficiently soft and flexible not to traumatize yet amply rigid to maintain an open oropharyngeal air passage under all conditions.’ He also confirmed that ‘the metal insert extends into the airway for about 2cm from the oral opening and prevents collapse of the rubber between the teeth’.

Thomas Baskett, in his 2004 article on Guedel published in Resuscitation, quoted Guedel’s own 1937 publication, ‘Inhalational Anesthesia: A Fundamental Guide’, describing use of the oropharyngeal airway during anaesthesia when ‘there is sufficient muscular relaxation to permit the lower jaw to fall backward allowing the base of the tongue to lie against the posterior wall of the pharynx. Depending upon the anatomical structure of the pharynx, this may partially or completely obstruct inspiration. It is usually remedied at once by the insertion of a pharyngeal airway which will hold the tongue forward from the pharyngeal wall.’

Dorsch and Dorsch in ‘Understanding Anesthesia Equipment (5th edition)’, describe an oropharyngeal airway as follows ‘…..may be made of elastomeric material or plastic. It has a flange at the buccal end to prevent it from moving deeper into the mouth. The flange may also serve as a means to fix the airway in place. The bite portion is straight and fits between the teeth or gums. It must be firm enough that the patient cannot close the lumen by biting. The curved portion extends backward to correspond to the shape of the tongue and palate.’

The International Standard ISO 5364: 2008 ‘Anaesthetic and respiratory equipment – oropharyngeal airways’ describes an oropharyngeal airway as a ‘device intended to maintain a gas pathway through the oral cavity and pharynx’. It confirms the size should be designated by the nominal length expressed in centimetres and provides a table to show how the length should be calculated. A table is provided confirming designated size (nominal length) , as well as tolerances and minimum inside dimensions. The latter is relevant to the ability to pass other devices, such as a suction catheter, through the airway.

The European Resuscitation Council (ERC) Guidelines for Resuscitation 2010 confirm that ‘An estimate of the size required is obtained by selecting an airway with a length corresponding to the vertical distance between the patient’s incisors and the angle of the jaw.’

The original Guedel airway was made of rubber with a metal insert. Most modern Guedel airways are made of plastic. Dorsch and Dorsch confirm that modifications to aid flexible fibreoptic intubation have been described and Guedel airways with the bite block incorporated into one moulding, thereby eliminating the danger of loose or detached bite blocks, are also available.

The Guedel airway has endured the test of time and remains one of most widely known and used airway adjuncts eighty years after it was first described. It is of simple design, but many of the best inventions often are.

 

The Macintosh laryngoscope – is there a pretender to the crown?

Over 70 years after Sir R R Macintosh first described it in his landmark study published in The Lancet in 1943, the Macintosh laryngoscope remains universally popular.

Intersurgical plastic single use Macintosh laryngoscope blade, InterForm stylet and InTube ET tube

The dominant position of the Macintosh cannot be attributed to a lack of alternatives. Dorsch and Dorsch, in their huge 1,000+ page book, Understanding anesthesia equipment, list over 45 types of laryngoscope blade. Although some of these are described as modifications of the Macintosh, including the Oxiport Macintosh, Polio, Fink, Tull Macintosh, Bizarri-Giuffrida, Upsher Low Profile, Upsher ULX Macintosh, Improved vision Macintosh and the Left handed Macintosh, the list of alternatives also includes a significant number of other designs, including the Wisconsin, Schapira, Soper, Guedel, Bennett, Seward, Phillips, Alberts, Robertshaw and the Bainton. This list is not exhaustive. If you don’t have easy access to a copy of Dorsch & Dorsch, an extract is included in Annex D of the international standard, ISO 7376:2009: Anaesthetic and respiratory equipment – Laryngoscopes for tracheal intubation.

 In current practice, the two major types of Macintosh blade are generally considered to be the American, also called the ‘standard’, and the English, sometimes known as the ‘classic’ or ‘e-type’. The latter description is a particular favourite, conjuring up the image of the classic E-Type Jaguar, once described by Enzo Ferrari as, ‘The most beautiful car ever made’. Such a comparison may seem a little tenuous, but surely they can both be considered design classics?

The primary differences between the English or German and the American Macintosh are the shape, height and length of the proximal flange and the distance from the light to blade tip. The performance of both types was compared in a 2003 study by Asai et al, published in the British Journal of Anaesthesia, entitled ‘Comparison of two Macintosh laryngoscope blades in 300 patients.’ There was a difference in the view of the glottis in 80 patients. Among these patients, the view was better for the English blade for 63 patients and the standard blade was better for 17 patients. The authors concluded, ‘In patients in whom laryngoscopy was unexpectedly difficult, the English blade provided a better glottic view significantly more frequently than the standard blade.’

Probably the closest rival to the Macintosh in terms of popularity is the Miller blade. Described two years earlier than the Macintosh, the 1941 paper by Miller in Anesthesiology and simply entitled, ‘A new laryngoscope’, described a straight blade which when compared to an ‘old style medium sized blade’, was ’rounded on the bottom, smaller at the tip, and has an extra curve beginning about two inches from the end. The internal diameter of the base is shallow, but adequate to permit the passage of a 38 catheter.’ This landmark study is free to access on the Anesthesiology web-site. Miller also described a modification of his adult laryngoscope for children in 1946, ‘A new laryngoscope for intubation of infants’, Anesthesiology. 7(2):205, March 1946. This paper is also free to access.

The Miller blade remains popular for children, with straight blades in general having been described as ‘superior in elevating the tongue, removing it from the field of view to facilitate a better visualization of the infant larynx than the curved blade laryngoscope’. Doherty JS et al, 2009. Pediatric Anesthesia, 19: 30–37.

 In 2009, The UK NHS Purchasing & Supply Agency’s Centre for Evidence-based Purchasing (CEP) produced a  Buyer’s Guide for Laryngoscopes (CEP08048). The scope of this guide only extended to Macintosh blades sizes 3 and 4. No Miller or other alternative blades were included, perhaps reflecting the fact that ‘The Macintosh is the most popular [blade] for use with adults in the United Kingdom…’

 In the UK 4th National Audit Project (NAP4) - Major complications of airway management in the UK, it is confirmed in relation to tracheal intubation that, ‘Direct laryngoscopy with a Macintosh blade remains the technique of first choice if not actively contraindicated when difficulty is not anticipated.’

 Intersurgical single use plastic Macintosh laryngoscope blade

Given the huge variety of options available, why is the popularity of the Macintosh so enduring?

 Scott and Baker provide some answers in their 2009 review article, How did the Macintosh laryngoscope become so popular? In a very informative and entertaining article, the authors, New Zealanders like Macintosh, suggest that poor straight blade laryngoscopy technique prior to the widespread use of muscle relaxants, commercial availability, Macintosh’s connections in the industrial sector and unprecedented influence on the development of anaesthesia, as key factors in the success of the Macintosh blade that can be traced back to ‘prevailing circumstances’ in the 1940s. They conclude that, ‘Despite being able to achieve superior laryngoscopy with paraglossal straight blade technique and the multiple alternatives available, the Macintosh laryngoscope remains ubiquitous and is regarded as the gold standard of direct laryngoscopy’.

 In 1984, over 40 years after publication of the original description of the Macintosh laryngoscope and 25 years before the review article published by Scott and Baker, Jephcott published  A historical note on its clinical and commercial development. It was estimated by Jephcott that well over 1 million Macintosh blades had been made and sold in the previous 40 years. With regard to the origin of the design, Jephcott confirmed Macintosh’s own account from a letter he received from him:

 “I had a bit of luck and the nous to take advantage of it. On opening a patient’s mouth with a Boyle-Davis gag I found the cords perfectly displayed. Richard Salt (a really excellent chap) was in the theatre with me: before the morning had finished he had gone out and soldered a Davis blade on to a laryngoscope handle and this functioned quite adequately as a laryngoscope. The important point being that the tip finishes up proximal to the epiglottis.” Interestingly, he continued by noting that, ‘The curve, although convenient when intubating with naturally curved tubes, is not of primary importance as I emphasised subsequently.’

 Jephcott confirms the Macintosh laryngoscope was originally produced by Medical and Industrial Equipment Ltd (MIE), quickly followed by The Longworth Scientific Instrument Company Ltd. In the USA, Foregger of New York started to make the device in 1943. Jephcott concluded his article by noting that, ‘Today the Macintosh laryngoscope is known throughout the world and is made by many firms in many countries. The technique discovered by Macintosh and the instrument he designed for its achievement has survived translation into plastic and the adoption of the fibre-light. No doubt they will endure other developments in years to come.’

 Jephcott’s prediction was correct. Since his article in 1984, the Macintosh blade has also survived translation in to single use metal blades and is incorporated in to the design of a number of video laryngoscopes. The Macintosh blade remains the dominant blade for direct laryngoscopy in the 21st century, with no obvious pretender to the crown.

The bougie – is it immortal?

Despite the technique of using an introducer to facilitate intubation being described over 65 years ago, the bougie, or tracheal tube introducer, remains a popular airway adjunct. With the development of more hi-tech aids to manage the airway, such as video laryngoscopes, is the demise of the bougie imminent or is it destined for immortality?

As Dr J J Henderson confirmed in correspondence entitled, ‘Development of the gum-elastic bougie’ – published in Anaesthesia in 2003, although Robert Reynolds Macintosh, who designed the Macintosh Laryngoscope – described by Sir Anthony Jephcott  as, ‘the most numerously and widely made durable item in the history of anaesthesia’ – is usually given credit for the first use of introducers to facilitate tracheal intubation, the technique was described a year earlier by Minnitt & Gillies in their ‘Textbook of Anaesthetics’, published by E & S Livingstone Ltd in 1948.

Dr Henderson confirms that in relation to passage of a tracheal tube with the Macintosh laryngoscope, the Minnitt & Gillies publication suggested, ‘This is an easy matter when a semi-rigid gum elastic catheter is passed’. 

 Sir Robert Macintosh (1897 – 1989), knighted in 1955, described the technique in his landmark illustrated 1949 article entitled, ‘An aid to oral intubation’ as follows:

 ‘One of the difficulties in passing tubes beyond a certain size is that the body of the tube obscures the view of the cords through which the tip must be directed. In order to overcome this I thread the tube over a long gum-elastic catheter, the tip of which is then passed through the cords under direct vision. Using the catheter as a guide, the tube is gently pushed down into position and the guide is then withdrawn.’

A few years later in 1952, responding to correspondence from a Dr Rook, Barnard (Anaesthesia 1952;7:119) described a technique he found of practical value when for any reason intubation proved difficult:

‘A small gum-elastic bougie is pushed through the Magill’s tube until about two inches extend beyond the distal end. The bougie is then bent forwards at an angle of 45 degrees or less. A Macintosh’s laryngoscope is passed and the bougie is passed through the larynx. The Magill’s tube is then passed well into the trachea and the bougie is removed’.

Use was not widespread until after the introduction of the Endotracheal Tube Introducer by Eschmann Bros & Walsh Ltd in the 1970s. This device incorporated a coudé tip, one of a number of differences to the device originally described by Macintosh in 1949. Dr Venn, who designed the device whilst working as an anaesthetic advisor to Eschmann, has described the development of the bougie in correspondence published in Anaesthesia in 1993 and the story was expanded further by Dr Henderson, from additional information provided by Dr Venn, in an article entitled, ‘Development of the gum-elastic bougie’ published in the same journal ten years later.

One irony is, as El-Orbany et al noted in Anesthesiology in 2004, the Eschmann Tracheal Tube Introducer is not gum, elastic or a bougie. The gum elastic bougie was originally a urinary catheter designed for dilation of urethral strictures. The material of the Eschmann device was different in that it had two layers: a core of tube woven from polyester threads and an outer resin layer. Other differences were the length, longer at 60cm, to allow the railroading of an endotracheal tube and the ‘presence of a 35 degree curved tip, permitting it to be steered around obstacles’.

Since its introduction, the bougie, or tracheal tube introducer, has grown in popularity, and whilst an equipment list for management of the difficult airway might include a number of different types of devices and airway adjuncts, such as alternative styles of rigid laryngoscope blades, supraglottic airways, video laryngoscopes and flexible fibreoptic intubation equipment, it is also likely to include some form of tracheal tube introducer or guide – single use or reusable.

The Difficult Airway Society (DAS) 2005 list of recommended equipment for routine airway management includes a ‘Tracheal tube introducer (gum-elastic-bougie)’ and an ‘Introducer (bougie)’ is included as part of ‘Plan A: Initial tracheal intubation plan’ in the DAS algorithm for ‘Unanticipated difficult tracheal intubation – during routine induction of anaesthesia in an adult patient’. Intubating bougies are also mentioned in the section on Recommendations for Extubation in the ‘Practice Guidelines for Management of the Difficult Airway’ , an updated report by the American Society of Anesthesiologists (ASA) Task Force on Management of the Difficult Airway, published in 2013.

Single use alternatives from a variety of manufacturers have been available for a number of years, and the Association of Anaesthetists of Great Britain and Ireland (AAGBI) Safety Guideline document, Infection Control in Anaesthesia, published in 2008, states:

Bougies: ‘Re-use of these items has been associated with cross-infection. Manufacturers recommend that a gum elastic bougie may be disinfected up to five times between patients and stored in a sealed packet. It is preferable that alternative single-use intubation aids are employed where possible.’

Even a cursory search of the published literature relating to tracheal tube introducers produces literally hundreds of studies, case reports and correspondence, comparing different types of introducers and a variety of potential extended applications, as well as the effects of sterilisation on multi-use devices, (Anaesthesia, 2011, 66, pages 1134 – 1139), and the forces required to remove bougies from tracheal tubes (Anaesthesia, 2009, 64, pages 320 – 322). There is even a report, published in Anaesthesia in 2007, regarding a home-made bougie. A quite alarming story in this modern age of device regulation, the author describes fashioning a bougie in Indonesia from a wire coat hanger and an ordinary giving set whilst waiting for a bougie to arrive from England! The author used the device on more than 40 occasions, commenting that, ‘In four patients I do not think I would have been able to intubate the trachea without it.’

It seems the bougie continues to be perceived as a useful airway adjunct for the persistent epiglottis-only view, but as Dr Richard Levitan has described in his overview of the Bougie (Tube Introducer), ‘The bougie is not a heat seeking missile, i.e., it does not ‘find’ the trachea automatically; laryngeal landmarks, i.e. the epiglottis at a minimum, or preferably the posterior cartilages must be sighted to place the bougie in the trachea.’

Given that many airway conferences now often include a debate comparing direct laryngoscopy to video laryngoscopy and provocatively ask whether the days of the standard laryngoscope are numbered, it is interesting that even those who feel the value of a bougie may sometimes be overstated, do not seem to suggest the bougie is in imminent danger of being consigned to the history books as a relic of anaesthesia practice from days gone by. Perhaps the bougie is immortal?

REVIVE airway study – clinical outcomes and future plans

Since plans were first announced to conduct a randomised comparison of two second generation SADs to current practice in the initial airway management of out-of-hospital cardiac arrest (OHCA) in a UK ambulance service, the results have been eagerly anticipated. This can be no surprise given the paucity of high level evidence to confirm the best technique for maintaining an airway and providing ventilation in adults with cardiopulmonary arrest.

However, the primary objective of REVIVE was not to provide a definitive answer to the above question, but to assess the feasibility of the study design. If REVIVE proved the design was feasible, capable of establishing whether ventilation success can be achieved, and of measuring other key outcomes such as return of spontaneous ventilation and survival to hospital, then it would lay the foundation for a future full-scale study which might just provide us with the answer to the above question.

The REVIVE airway working group presented a poster at the International Conference on Emergency Medicine (ICEM) in Dublin in June last year entitled, ‘Early report of paramedic recruitment in the REVIVE-Airways study’. This confirmed the target of recruiting 150 randomised paramedics and stratification by experience and base station location had been successfully achieved.

Last month, in an abstract presented at the American Heart Association Resuscitation Science Symposium in Dallas, we had our first glimpse of the data related to the clinical outcomes. As this was a feasibility trial and not designed or powered to show clinically significant differences between each device or study arm, there was some discussion as to whether the clinical data should be released. However, the protocol published in the British Medical Journal (BMJ), suggests the original intention had always been to disseminate the clincial data to participants in the study and to the wider public via an open access web-site, appropriate conferences and medical journals.

A more comprehensive overview of the study results was presented at the UWE Conference & Exhibition Centre in Bristol on the 29th November. Speakers included Dr Jerry Nolan, Dr Jas Soar, Prof Jonathan Benger, Dr Matt Thomas, Dr Janet Brandling, Dr Sarah Voss and Mr Dave Coates.

The results showed no significant differences in important clinical outcomes between the use of a supraglottic airway (SAD) and usual practice (principally tracheal intubation) during OHCA. However, the trial was insufficiently powered to detect small differences in mortality. The i-gel® was superior to the LMA Supreme® on several measures, including compliance, adverse events and staff feedback. The investigators are proceeding to a large-scale trial of i-gel® versus tracheal intubation in OHCA.

For the record, the survival to hospital discharge was as follows:

     • i-gel® 10.3%
     • LMA Supreme® 8.0%
     • Usual practice 9.1%

     (p=0.73)

Survival to 90 days is shown below:

     • i-gel® 9.5%
     • LMA Supreme® 6.9%
     • Usual practice 8.6%

     (p=0.65)

Data was also presented on neurocognitive and quality of life outcomes, as well as successful device placement. There was also interesting data regarding the number of arrests attended by each paramedic (March 2012 to February 2013), which ranged from 0-11, with a mean of 3.6 arrests per paramedic. 15 paramedics did not attend any arrest during the study period. There were presentations confirming how the airway was actually managed in practice and feedback from the paramedics that participated in the study.

Successful aspects of REVIVE included proof of the feasibility of a cluster randomised trial of airway intervention in OHCA and the collection of valuable data to inform a full trial. It also demonstrated the strong support of paramedics and informed statistical calculations for a larger study. So, what next?

REVIVE 2

Professor Jonathan Benger, in a presentation entitled, ‘Further research: REVIVE 2′, confirmed the aims of REVIVE 2 as identifying differences in the primary outcome of modified Rankin Scale (mRS) at hospital discharge: good recovery (0-3) versus poor recovery/death (4-6) and differences in:

• mRS at 3 and 6 months following OHCA
• Quality of life at discharge, 3 months and 6 months
• Cognitive function at 3 and 6 months
• ROSC
• Length of stay
• Ventilation success, regurgitation and aspiration
• Loss of a previously established airway

Comparative cost effectiveness of the i-gel® and intubation, as well as the views and preferences of paramedics is also to be assessed.

It is intended the design will be a cluster randomised trial (by paramedic), with an airway algorithm for each arm. Clinical need will always take precedence and there will be an economic analysis, as well as patient and public involvement. An outline bid has been successful, and a full proposal is to follow (5th February 2014). It is intended for the trial to run for 45 months, from October 2014 to June 2018.

REVIVE 2 will need approximately 1,300 paramedics. This will probably require the inclusion of three or four large UK ambulance trusts. It is estimated the cost for REVIVE 2 will be £2 million. The investigators are ready to begin.

Four and a half years (probably 5 years before the results are reported) may seem a long time to wait for the conclusion of REVIVE 2, but given the lack of high level data currently available regarding the best airway device to use during the initial phase of OHCA, it will be worth the wait.

Passive oxygenation – the jury is still out

As discussed in my blog post from April 2012, ‘Should we be passive about oxygenation?’, in the years preceding the issue of the 2010 European Resuscitation Council (ERC) and Amercian Heart Association (AHA) guidelines on resuscitation, interest in the concept of passive oxygenation, particularly as a component of CardioCerebral Resuscitation (CCR) protocols, appeared to peak. This led to considerable speculation as to how the International Liaison Committee on Resuscitation (ILCOR) would assess the published evidence regarding passive oxygenation compared to standard ventilation techniques and what the subsequent recommendations would be in the new 2010 ERC and AHA guidelines.

In the end, the ERC concluded that, ‘There is insufficient evidence to support or refute the use of passive oxygen delivery during CPR to improve outcome when compared with oxygen delivery by positive pressure ventilation’, and the AHA that, ‘This time there is insufficient evidence to support the removal of ventilations from CPR performed by ACLS providers.’

It might reasonably have been expected that such conclusions would stimulate potential investigators to intensify their efforts to provide the additional evidence needed to enable more conclusive statements in the next set of guidelines, scheduled for issue in 2015. Disappointingly, this has not been the case, so the jury is still out, with little immediate prospect of having significant new evidence to consider.

There may be any number of reasons for this. One possibility is the debate regarding airway management and ventilation in CPR has simply moved on to other areas of interest, such as the optimal airway device. However, if so, it has progressed without really resolving the question of whether passive oxygenation has a useful role to play during CPR, particularly for the first few minutes following witnessed ventricular fibrillation/ventricular tachycardia (VF/VT).

A key question regarding the concept and viability of passive oxygenation as an alternative to standard ventilation during the initial phase of CPR has always been whether chest compressions generate adequate ventilation in cardiac arrest (providing there is a patent airway).

In the 2010 AHA guidelines for CPR (Part 8), in the section on passive oxygenation delivery during CPR, it is stated that:

‘Chest compressions cause air to be expelled from the chest and oxygen to be drawn into the chest passively due to the elastic recoil of the chest. In theory, because ventilation requirements are lower than normal during cardiac arrest, oxygen supplied by passive delivery is likely to be sufficient for several minutes after onset of cardiac arrest with a patent upper airway.’

In their article, ‘Airway techniques and ventilation strategies’, Nolan and Soar, comment that:

‘A study of 17 intubated patients in an emergency department who were undergoing chest compressions using a mechanical compression device (Lund University Cardiopulmonary Assist System (LUCAS)) showed that the median tidal volume per compression was just 42ml – considerably less than the dead space. These patients had been in cardiac arrest for more than 40 min, and therefore, their lung compliance was probably poor. Nevertheless, the implication is that chest compressions alone do not generate adequate ventilation. Despite this, and based partly on further animal data, a group from the Sarver Heart Center in Tucson, Arizona, the United States, has described the use of passive oxygenation insufflation as part of their protocol for CardioCerebral Resuscitation (CCR). This group has recently reported better survival to hospital discharge after witnessed VF cardiac arrest from adults who were managed initially with passive oxygenation (insertion of an oropharyngeal airway and oxygen given at 15L/min by non-rebreather mask) compared with those given active ventilation.’

Perhaps improvements in survival rates, such as those described above, have been due to factors other than passive oxygenation? Most of the studies on passive oxygenation have included multiple treatment changes and/or a number of confounders, so this remains a possibility.

Despite the lack of significant new data, passive oxygenation has continued to be a subject of discussion in a number of recent articles.

In a review article published in ‘Current Opinion in Critical Care’ (COCC), entitled, ‘Advanced life support and mechanical ventilation’, Kill, Dersch and Wulf discuss, amongst other topics, passive oxygenation versus active ventilation. They conclude that:

‘The total number of studies dealing with mechanical ventilation during resuscitation and ALS is still limited. The still recommended standard is positive-pressure ventilation with a tidal volume of 6-7ml/kg and a respiratory rate of 10/min, purse oxygen and preferably with a ventilator. During the first few minutes of CPR, passive oxygen insufflation via a nonrebreathable mask or an airway device might be an acceptable alternative. Hyper-oxygenation should be avoided once a spontaneous circulation is restored, and waveform capnometry is an important monitoring for both ventilation and perfusion of the lungs.’

In another review published in COCC in 2013, entitled, ‘Airway Management in cardiopulmonary resuscitation’, Soar and Nolan confirm that:

‘Some EMS system protocols for adult primary cardiac arrest include airway opening and high-flow face-mask oxygen, and passive oxygenation from chest compressions for the first 6 minutes of CPR. Improved outcomes have been reported with this ‘minimally interrupted’ CPR approach although further study is needed’. A retrospective analysis of adult OHCA patients reported improved neurologically intact survival after witnessed VF/VT OHCA with passive ventilation compared with bag-valve mask ventilation. Survival was similar for unwitnessed VF/VT and nonshockable rhythms. Observational data from large registries in Japan, however, suggest that ventilation is necessary during CPR in children, after cardiac arrest with a primary respiratory cause, and during a prolonged cardiac arrest.’

As well as delivery using a non-rebreather mask and oropharyngeal airway, passive oxygenation, or passive airway management™ (PAM), can be delivered via a supraglottic airway, such as the Intersurgical i-gel O2™, which incorporates a supplementary oxygen port specifically designed for this purpose (figure 1). Such a device may offer advantages over use of a non-rebreather mask, such as providing the opportunity to switch more seamlessly from passive oxygenation to standard ventilation, thereby minimising interruption to chest compressions. However, this is speculation only and has yet to be confirmed by any published evidence.

Connecting a standard oxygen tube to the supplementary port of the i-gel O2 in preparation for the delivery of passive oxygenation

Connecting a standard oxygen tube to the supplementary port of the i-gel O2 in preparation for the delivery of passive oxygenation

In conclusion, whilst there appears to be very little new published data, passive oxygenation remains a subject of lively debate in resuscitation circles and is often mentioned in articles reviewing ventilation strategies and airway management in cardiac arrest. Before it slips from view due to a lack of new evidence, it is hoped a new wave of studies are already in progress and will soon emerge as peer reviewed published studies in the near future, enabling a more conclusive assessment to be made as to whether passive oxygenation has a useful role to play during CPR. Without doubt, at the present time, the jury remains out.

I would be most interested to hear from anyone who is currently using a protocol which incorporates passive oxygenation, is involved in a study incorporating this technique or is looking to conduct such a study in the future.

Use of SADs in the prehospital setting – a new review

Ostermayer and Gausche-Hill, in their review paper, ‘Supraglottic airways: The history and current state of prehospital airway adjuncts’, to be published in Prehospital Emergency Care, provide a much welcome overview on the use of supraglottic airways (SADs) in what can often be a difficult and challenging setting.

The paper begins by confirming that the widespread adoption of SADs in prehospital care ‘directly stems from their ease of use, simplicity of training, predictability, and speed of insertion’. It continues with a brief history of the use of SADs, particularly the Laryngeal Mask Airway, in the prehospital setting and includes individual overviews of a number of devices, including the Combitube®, King LT®, LMA Fastrach® and Intersurgical i-gel®.

There is acknowledgement that whilst SADs do not, in the words of the authors, provide ‘definitive airway management’, some of the newer devices do incorporate higher seal pressures than earlier options and the ability for gastric decompression, which ‘may significantly decrease aspiration risk’.

In anaesthesia circles in particular, a new classification of SADs into 1st and 2nd generation devices has gained considerable popularity and helped to highlight important differences between devices. In a review article by White et al, entitled, ‘A critique of elective pediatric supraglottic airway devices’, a 1st generation device was described as a ‘simple airway tube’ and 2nd generation as a device that ‘incorporates specific design features to improve safety by protecting against regurgitation and aspiration.’

Of course, as mentioned in an earlier blog post on the classification of supraglottic airways, designation as a 2nd generation device does not in itself confirm superiority of performance, but the classification does provide useful information about basic product design characteristics, such as whether the device incorporates a mechanism for the management of regurgitant fluid. These are important considerations when deciding the most appropriate SAD to use in the pre-hospital setting.

Discussion on the use of airway devices in the austere environment states that data collection from Combat Support Hospitals in 2008 demonstrated that 86.3% of prehospital managed airways were managed with an Endotracheal tube (ETT), 7.2% with an Esophageal Tracheal Combitube (ETC) and 0.7% with an LMA, and that, ‘although the ETC is the standard rescue airway device for the U.S. Army, poor skill retention has been demonstrated with the device among medics.’

RSA or Rapid Sequence Airway placement, the insertion of an alternative airway, such as a SAD, after pharmacological treatment with a paralytic and sedative is discussed. This is an important subject and Ostermayer and Gausche-Hill confirm that no trials have yet compared the risks and benefits of drug-assisted SAD placement to non-drug-assisted placement.

The final section of the review takes a look at airway management in Out-of-Hospital Cardiac Arrest (OHCA). Of particular interest is a reference to a Japanese study which looked at neurological outcomes in patients where an ETT was used, compared to either a SAD or Bag Valve Mask (BVM). The results are interesting, but it is important when reviewing such studies to consider the SADs that were used. Results are likely to be quite different for 2nd generation SADs such as the i-gel, compared to a 1st generation device such as a standard Laryngeal Mask Airway. In some countries like the UK, devices such as the Combitube® are now rarely, if ever used. This issue is discussed in more depth in my blog post, ‘Pre-hospital airway management for patients with OHCA’.

There are a couple of small errors in the ‘early view’ version of this paper. For example, in Table 1, the i-gel® is designated as reusable, whereas the device is in fact single use. No doubt these errors will be corrected in the final published version.

In summary, this review paper provides an interesting overview of the history and current state of prehospital airway adjuncts. The conclusion will reflect the thoughts of many with regard to this subject:

‘Since prehospital airway management devices largely evolve from the field of anesthesia, much of the medical literature regarding new devices focuses on the operating room. With the many obvious practical and clinical differences between these clinical settings, further studies in the prehospital environment are needed, specifically trials correlating neurologic outcome to supraglottic device’

Equally important will be to ensure that results for one type of SAD are not extrapolated to another with quite different design characteristics. Tempting as it may be to discuss SADs as if they are one homogenous group of devices, the reality, as this paper helps to highlight, is that the performance of each device can and will be quite different. One SAD is most definitely not the same as another. Further data regarding the use of SADs in the prehospital setting is eagerly awaited.